ТАСК

Lezah Williamson

February, 2012

Most conventional tack is made of:

- Leather: basic material of most saddle, bridles, breastplates and martingales, halters, etc.
 - 90% is made of cowhide (Aberdeen Angus is considered best)
 - Pig/deer skin may be used for the seat, or to cover a saddle
 - Sheep skin may be used for panels
 - o Buffalo hide is sometimes used for stirrup leathers
 - Substance = thickness of leather
 - Thicker leather = more fat = longer lasting
 - Two sides to leather:
 - Flesh underside; should be smooth
 - **Grain** *top side*; treated and sealed
 - There is also a fibrous layer between that binds these two together
 - Good quality leather in good repair should
 - Feel slightly greasy/not dry
 - Firm, not soft/pappy
 - When bent, no bubbles should form
 - The enemies of leather are:
 - Heat
 - Water/sweat: hot water removes fat
 - neglect
- **Metal:** used for most bits, stirrup irons, buckles on tack, in some saddle trees (partially) and to help keep saddles together (rivets, etc.)
 - o Steel
 - Used in the old days, not so common today
 - rusts
 - o Stainless steel is the most common today; most popular
 - Strongest; most durable
 - Does not rust
 - o Copper
 - Encourages salivation; 'sweet' taste
 - Soft; can be chewed and get sharp points
 - Sweet iron aka cold rolled steel

- Dense; softer than steel
- Prone to rust
- Tastes like copper
- \circ Aluminum
 - Light
 - Soft
 - Not very strong
 - No longer common; may still be used with some racing tack
 - Least expensive
 - Bitter; drying to the mouth
- o Nickel
 - Breaks easily and often without warning; considered unsafe
 - No longer common
 - Not shiny
- o Nickel alloy
 - Stronger than pure nickel
 - Shinier than pure nickel
- o German silver
 - Not fully silver; an alloy (60% copper; 20% nickel; 20% zinc)
 - Expensive
 - 'sweet' encourages salivation
 - Needs a lot of cleaning
- o Aurigan
 - 85% copper; 4 % silicon; 11% zinc (no nickel)
 - Some horses/people are allergic to nickel
 - Has all the benefits of copper but is stronger

- Other materials:

- Rubber coated bits will have metal or wire inside them
 - Encourages a horse to 'go forward' to the contact; not good for a horse that likes to lean
 - Can be chewed through to expose the metal; least durable
 - Neutral taste
 - flexible
- Vulcanite bits (not a metal, but a variation on rubber bits)
 - Harder than rubber, harder to chew
 - Still softer than metal
- o Happy mouth
 - Engineered plastic with apple flavour
 - Ripple texture encourages chewing
- o Synthetics
 - Used in some tack (bridles, saddles) inexpensive, easy to clean

- Used in between layers of stirrup leathers to strengthen/prevent stretching
- Used on girths and numnahs commonly
- Wood:
 - Rarely, bits in the past were made of wood; not safe
 - Saddle trees are typically made of beech wood: strong, light, somewhat flexible
 - Saddle trees can also be made of adjustable metal, or fibreglass

Trees: are the support structure that the saddle is built on; they help to distribute the rider's weight more evenly over the back

- Beech wood is the most commonly used wood for trees
- A spring tree is a tree made of laminated wood over a riveted gullet plate of spring steel; this allows minimum flexibility
- Synthetic molded saddles can be made of
 - Polyurethane
 - Fibreglass: limited durability
- Some saddles can be treeless
 - For more on saddle trees and construction, go to *bettersaddles.co.uk*

Fitting saddles:

- 1. Of primarily importance make sure it fits the horse
- 2. Second most important thing is that it fits the rider
- 3. Also ensure that it is correct for the type of riding you are doing

Safety of tack:

- Check the **stitching**: leathers, pommel, saddle flap, etc.
- Check girth billets: watch which ones are attached
 - The girth should always be attached to straps that have different points of attachment on the saddle
 - In your typical saddle, use billet strap #1, and either #2 OR #3
 - Never use straps #2 and #3 together
- Check the **condition of leather**:
 - Obviously worn or broken leather should be replaced
 - watch for checking
 - Checking = horizontal cracks especially seen on thinner pieces of leather like in the bridle
- Check the **condition of metal**
 - o Metal fatigue can occur
 - Stirrups have the highest percentage or wear-related breakage

- Peacock (safety stirrups) are only safety rated for 90 lbs, and should not be used by riders heavier than that; there are other safety stirrup options available
- Check the condition of other materials
 - Web/webbing (cotton), as seen in web reins, can rot
 - Nylon, as seen in some halters, bridles and longe lines, can fray
 - Rubber, as seen as a coating on rubber reins, can dissolve if old or crack if exposed to a hard environment (too wet/cold/much cleaning product)
 - Felt (as seen in saddles or some old numnahs or boots) can get lumpy

Bits and Bitting

Bits: help to control horse's speed, direction and improve balance

How to check for the correct size:

- 1. take a piece of binder twine
- 2. put it in the horse's mouth where the bit usually sits
- 3. put your fingers on either side of the binder twine
- 4. remove binder twine from mouth, keeping fingers where they are
- 5. measure distance between fingers
- 6. add ¼" on either side for size of bit to be used
 - a. if using a loose ring snaffle, bit may need to be bigger to prevent pinching

Families of bits:

- Snaffle
- Weymouth (double bridle)
- Pelham
- Gag
- Bitless

Principles of bitting: Bits (and bridles) operate on one or more of the 7 parts of the horse's head where pressure is applied

- bars
- lips and corners of the mouth
- roof of mouth
- tongue
- curb/chin groove
- poll
- nose

What makes a bit more/less severe:

- # of pressure points acted upon
- Size of mouthpiece in relation to horse's mouth size
 - Previously it was believed that a thick mouthpiece was softest
 - This is still true in most cases
 - Exception: the horse with the small mouth, low roof of mouth or large tongue will be more comfortable in a smaller/narrower bit
- Length of shank
 - The longer the shank, the more leverage you have = stronger bit
 - How the curb chain is done up will affect this
 - None used/loose chain = decreases leverage capabilities
 - Overly tight will increase the leverage

• 45 degree angle is considered correct

- # of joints
 - Mullen mouth (straight bar) = least severe
 - Single jointed = nutcracker action
 - Double jointed may be:
 - Less severe is the central link lies flat on the tongue (e.g., French Link)
 - More severe if the central link cuts into the tongue (e.g., Dr. Bristol)
 - An unjointed bit with a high port can be considered very severe
- Treatment of mouthpiece (smooth, serrated, rollers, etc.)
- Materials used for mouthpiece (steel, rubber, etc.)
- Technique/skill of rider
- If used in conjunction with other articles of tack (e.g., crank nosebands, etc.)
- Size of the rings (the further away the reins attach from the centre of the bit, the more severe)
- Length of the cannons (the further away the reins attach from the centre of the bit, the more severe)

Main types of bits:

Snaffle: *direct pressure bit* with *upward head raising action*; does not use leverage

- Has one mouthpiece, jointed or mullen mouth/unjointed
- Simplest form of bit
- Operates on the corners of the mouth
- $\circ~$ A jointed snaffle adds nutcracker action to the lower jaw
 - Bars
 - Tongue
 - Possibly the roof of the mouth
- Jointed is more severe than a mullen mouth
- *straightbar/mullen mouth*: simplest bit works on direct pressure

- single jointed snaffle: works on direct pressure and adds nutcracker action to the lower jaw
 - $\circ \quad$ comes in many different ring types, including:
 - eggbutt
 - loose ring
 - D ring
 - Full cheek
 - Fulmer/Australian loose rein
 - Half cheek
 - Comes in many different mouthpiece types, including:
 - Smooth mouth
 - Slow twist
 - Fast twist
 - Wire/twisted wire
 - Rollers
 - \circ $\,$ May have attachments that change the action or try to prevent an evasion
 - Mouthing pieces
 - Spoons
 - Double twisted wire (and a few others) introduces a second bit into the mouth
 - Comes in many different materials:
 - Stainless
 - Copper/partially copper
 - Rubber
 - Happy mouth
- Double jointed (French Link): decreases the nutcracker action; a softer bit
 - \circ $\;$ Has a spatula shaped centre link that lies flat against the tongue
- Double jointed (Dr. Bristol); severe bit
 - Had a rectangular /oblong shaped centre piece that is at an angle to the tongue

Weymouth: aka Double bridle

- There are two bits in the horse's mouth at the same time any curb used with a bridoon
 - Curb, which uses leverage to cause the horse to flex at the poll
 - Typically used in conjunction with a curb chain to increase leverage
 - Bridoon (small snaffle) that has an **upward head raising action**
 - Bridoon acts on the corners/lips
 - Curb acts on bars; mullen mouth acts on tongue
 - Poll pressure
 - Curb chain acts on chin groove
 - The tighter the chain, the more severe the bit is
 - 45 degrees is considered ideal
 - A curb with a high port may act on the roof of the mouth

The double bridle is only for the most advanced rider and well trained horse NOTE: at B2, the candidate will be asked to fit a double bridle

Pelham: another leverage bit

- Uses pressure on the mouth, poll and chin groove
- The longer the shank, the more the leverage
- ½ way between a snaffle and double bridle
- Only one mouthpiece
- Action:
 - Pressure on the corners of the mouth
 - Mullen mouth puts pressure on the tongue
 - o Poll pressure
 - Curb chain acts on chin groove
- Kimberwicke is also in this family

Gag:

- Head raising action action through pulley pressure
- An exaggerated snaffle
- Extremely severe
- Encourages horse to hollow its back if used long-term
- Illegal in racing and many types of competition

Bitless:

- Suitable for horses who are unable to work with a bit in their mouth or who have had a mouth injury
- Works on nose, poll, and or curb/chin groove pressure
 - Three main types
 - Hackamore Bosal (western) ; or English Jumping hackamore, operates primarily on nose pressure
 - Related to the longeing cavesson
 - Mechanical/Blair pattern hackamore: English and western; has shanks and a curb chain; operates on the *three pressure points (nose, chin groove and poll*)
 - Cross under bridle (aka Spirit, Dr. Cook, etc.) adds more points of pressure including side of face but has a slow rein release