
The Nutrients

Equine Nutrition #4
Created for Canadian Pony Club
Education
By Lezah Williamson

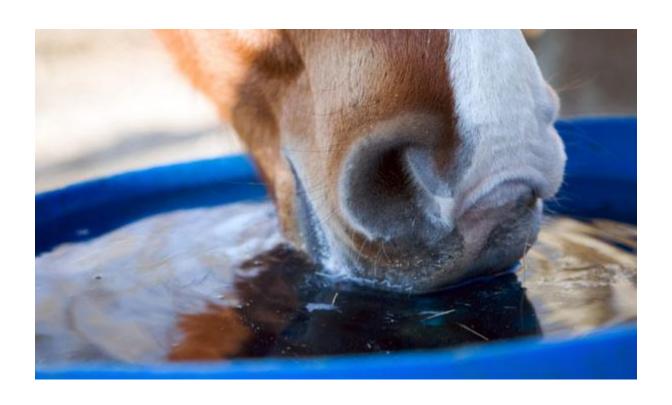
Nutrients

- Water
- Carbohydrates
- Protein
- Fats/oils
- Vitamins
- Minerals

Nutrients are necessary for repair of body, development, energy for work

Food is composed of water and dry matter

- Water
- Dry matter:
 - Minerals
 - Vitamins
 - Protein
 - Lipids (fats)
 - Carbohydrates
 - Structural
 - Non-structural

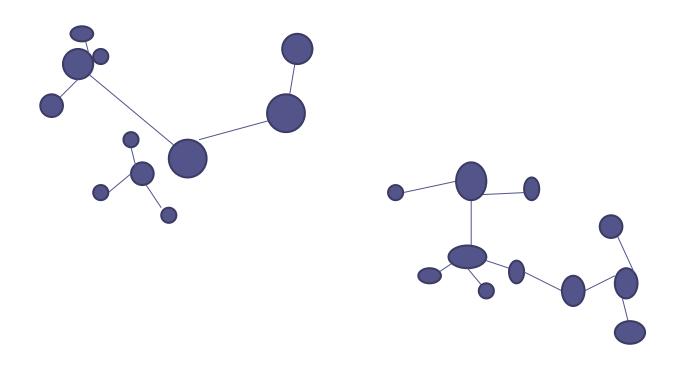

Energy

- Energy is not a nutrient
- Energy= calories
 - We measure horse calories in megajoules (MJ)
 - 1 MJ = 239 calories
- The horse gets energy from the content of its food
 - Primarily carbohydrates and lipids

Groups of feeds by function

- Nitrogenous
 - Proteins, fats, carbohydrates
 - Build body tissue
 - Supply energy
- Minerals
 - Aid in building body tissue
- Vitamins
 - Allows body to utilize nutrients
- Fibre
 - Helps system utilize nutrients
 - Synthesis of B vitamins

Water


Water

- Essential component
 - 80% of foal's body
 - 60-75% of a mature horse's body
- Necessary for:
 - Thermoregulation
 - Metabolism
 - Transportation of nutrients
 - Excretion
 - Digestion

Factors affecting amount of water needed in diet

- Water should be available at all times
- Rate of consumption will vary, depending on:
 - Age of horse
 - Status of horse
 - lactating mares have a higher water requirement
 - Intensity level of exercise
 - Temperature/humidity
 - · An idle horse will drink 28 L/day
 - In hot weather a horse may drink 80 L/day
 - · Exercise will further increase this requirement
 - Type of feeds in diet
 - The more fibre in the diet, the more the horse will drink
 - · Some feedstuffs have a high moisture content
 - Salt will increase thirst

Amino Acids and Proteins

Proteins

- Structural
 - Used for building and repairing muscle; skin; hair
- Produce enzymes
- Catalysts affect rates of reactions
- Hormones
- Transport compounds and nutrients around body

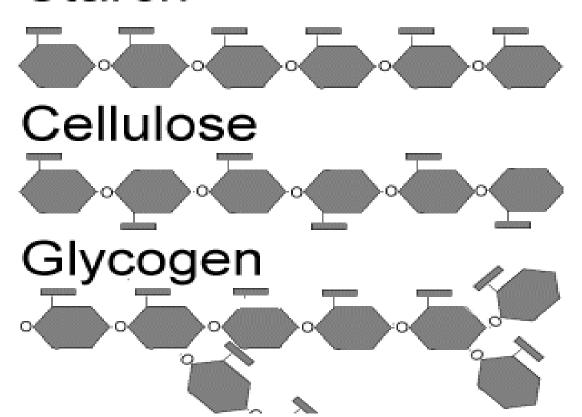
Amino Acids

- Amino Acids are the building blocks of protein
- Essential Amino Acids
 - Need to be supplied in the diet
 - About 50% of amino acids are essential amino acids
- Non-essential Amino Acids
 - Synthesized in the body
 - Don't need to be supplied in the diet
- Lysine is the first limiting Amino Acid
 - Protein quality will be an indicator of how much Lysine is present
 - Methionine is another very important amino acid

Protein breakdown

- Protein breakdown starts in the stomach
- Protein digestion and absorption occurs in the small intestine
- No/very little absorption happens in the large intestine
- Proteins associated with the plant cell wall are broken down in the large intestine
 - This supports microbial growth

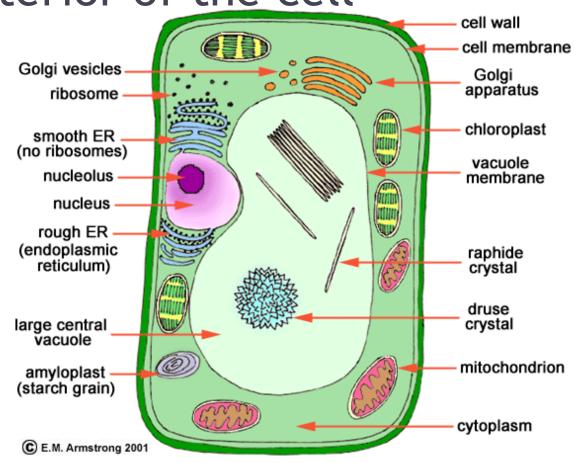
More on protein


- Protein requirements increase as the workload increases
- Too much protein can be dangerous
 - Can cause body and mental stress (bad behaviour)
 - Overworks the kidneys

Lack of protein can have debilitating effects:

- poor growth
- poor performance
- lack of appetite
- poor condition

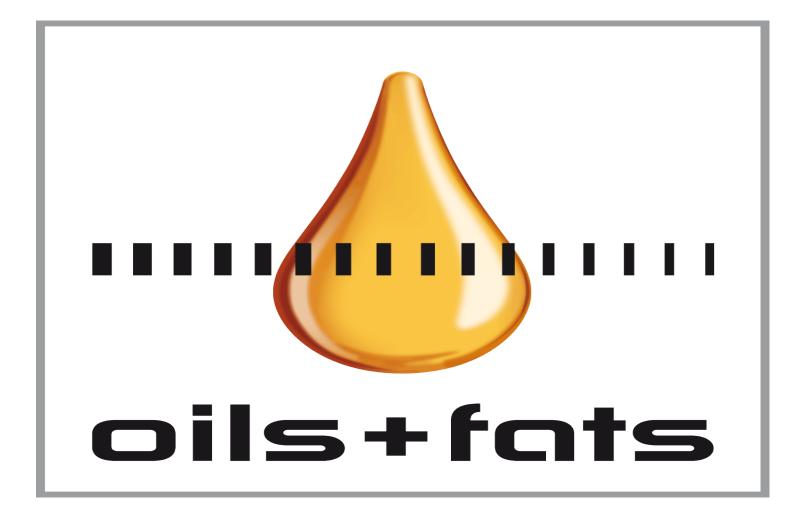
Carbohydrates


Starch

Carbohydrates

- Collective term for starches, sugars, dietary fibre
- Primary energy source
- 2 main types:
 - Structural
 - Associated with plant cell wall (dietary fibre)
 - Non-structural
 - Associated with plant cell content
 - Simple sugars, starches and fructan

Structural carbohydrates -cell wall; non-structural carbohydrates - from the interior of the cell

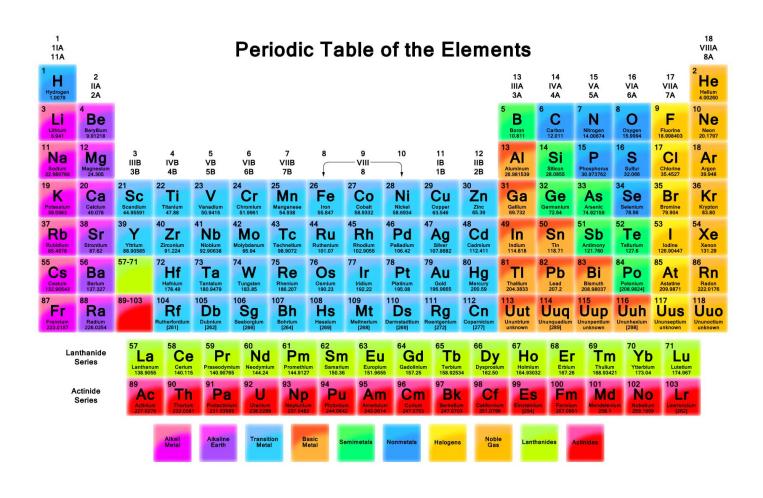

Carbohydrate digestion

- Carbohydrates are degraded by microbes present in the GI tract
- Not digested in the small intestine
 - no enzymes present to break down these components
- Microbial population breaks down carbohydrates to produce volatile fatty acids:
 - Acetic Acid
 - Butyric Acid
 - Propanoic Acid

Carbohydrates

- Other functions of carbohydrates include fuelling growth and body development, and warmth
- Excess carbohydrates can be stored in the form of fat
- Sources of carbohydrates include:
 - Grains (starch)
 - Grasses and hays (cellulose)
 - Molasses (sugar)

Oils and Fats


Fats and Oils

- Necessary for:
 - healthy skin
 - to improve appearance
 - for heat/warmth
- Provide 2 times (2X) the energy of carbohydrates
- Easily digestible
 - Well tolerated in the diet
- Large amounts can disrupt flora in the hindgut
 - Coats fibre, reducing access to fibre for microbes
- Feed in limited amounts
- Introduce to the diet gradually

Fats and Oils (continued)

- Oil is fat in a liquid form
- Fats and oils provide a concentrated source of slow-acting energy
- Fats and oils have a protein sparing action
- Corn oil is the most commonly fed oil to put weight on
- Cod liver oil can be fed for vitamin value in winter
- Fats and oils can go rancid in hot weather

Minerals

Minerals

- Inorganic nutrients
 - Not carbon based
- Essential to life
 - Required for growth
 - Primary component in formation and upkeep of skeletal system
 - Cofactors of enzymes
 - Transport energy
 - Present in the fluid content of cells
 - Important for the function of the nervous system
 - Important in blood formation
- Comprise 7% of body weight
 - Referred to as 'ash content'
- Most minerals are absorbed in the small intestine

Minerals can be divided into 2 types

Macro-minerals

- Need larger amounts: grams/day
- Examples are:
 - Calcium
 - Phosphorous
 - Sulphur
 - Potassium
 - Magnesium
 - Chlorine
 - Sodium

Micro-minerals

- Need small amounts: mg/day
- Examples are:
 - Copper
 - Cobalt
 - Zinc
 - Iron
 - Selenium
 - Chromium

Mineral combinations

- Calcium:Phosphorous ratio
 - Combines with Vitamin D for bone development and maintenance
 - Present in the horse's body at 2:1
 - Feed the growing horse at 2:1
 - Feed the mature horse at 1.1-1.5:1
 - If physical or reproductive demands increase, the need for both of these can double
- Sodium and Chlorine combine to make common salt (sodium chloride)
 - Along with potassium, these three are referred to as 'tissue salts' (electrolytes)
 - Salt is extremely important to promote thirst, in the process of thermoregulation and for maintaining osmotic pressure
 - Large amounts of salt are lost through sweating and must be replaced
 - Other minerals can commonly be combined with salt:
 - Cobalt
 - Selenium
 - Iodine
 - Potassium (KCl light salt)

Vitamins

Vitamins

- Vitamins are organic compounds
- They are needed in only small amounts
- They are essential to life
 - Needed for normal bodily functions
 - Essential to the body's well-being

Vitamins: two types

Water soluble

- These can be dissolved in water
- Excess excreted daily
- Deficiencies can occur
 - Vitamin B complex
 - Synthesized in large intestine
 - Vitamin C
 - Synthesized in liver

Fat soluble

- These can be stored up to six months in fat and liver cells
- Deficiencies can occur, but so can excesses
 - Vitamin A
 - Vitamin D
 - Vitamin E
 - Vitamin K

Notable Vitamin and Mineral Combinations

- Cobalt and the B vitamins:
 - One of the B complex vitamins, cobalamin, can only be synthesized in the presence of cobalt
- Selenium and vitamin E
 - Selenium and vitamin E work together to help to prevent azoturia

QUESTIONS

- 1. Name the 5 nutrients.
- 2. What is the function of protein?
- 3. What is the function of carbohydrates?
- 4. What is the function of water?
- 5. Name the fat soluble and water soluble vitamins.
- 6. What is the calcium phosphorous ratio?